Process Equipment and Control Engineering

Process Equipment and Control Engineering Bachelor Degree

Feel Free to Ask Questions!

Tel : +8615850513534

E-mail : apply@acasc.cn

  • Application Deadline:2017/07/15
  • Tuition:¥17000.00
  • Application Fee:¥800.00
  • Service Fee:¥350.00
How To Apply

Applying through ACASC generally takes a few minutes to complete. It takes 5 steps to complete the application.

1. Click “Apply Now” button at the top of the page.

2. Fill in online application form.

3. Upload required documents.

4. Pay the application fee and the ACASC service fee

5. Click “Submit” button.

Important notice: In order to apply, you need to create an account with ACASC.

Process engineering involves translating the needs of the customer into (typically) production facilities that convert "raw materials" into value-added components. These components are transported to the next stage of the supply chain, typically packaging engineering. Some larger-volume processes such as petroleum refining processes tend to transfer the products into transportation (trucks or rail) that are then directed to distributors or bulk outlets.

Prior to construction, the design work of process engineering begins with a block diagram showing raw materials and the transformations (unit operations) desired. The design work then progresses to a process flow diagram (PFD) where material flow paths, storage equipment (such as tanks and silos), transformations (such as distillation columns, receiver/head tanks, mixing, separations, pumping, etc.) and flowrates are specified, as well as a list of all pipes and conveyors and their contents, material properties such as density, viscosity, particle-size distribution, flowrates, pressures, temperatures, and materials of construction for the piping and unit operations.

The process flow diagram is then used to develop a piping and instrumentation diagram (P&ID) which includes pipe and conveyor sizing information to address the desired flowrates, process controls (such as tank level indications, material flow meters, weighing devices, motor speed controls, temperature and pressure indicators/controllers, etc.). The P&ID is then used as a basis of design for developing the "system operation guide" or "functional design specification" which outlines the operation of the process.

From the P&ID, a proposed layout (general arrangement) of the process can be shown from an overhead view (plot plan) and a side view (elevation), and other engineering disciplines are involved such as civil engineers for site work (earth moving), foundation design, concrete slab design work, structural steel to support the equipment, etc.). All previous work is directed toward defining the scope of the project, then developing a cost estimate to get the design installed, and a schedule to communicate the timing needs for engineering, procurement, fabrication, installation, commissioning, startup, and ongoing production of the process.

Depending on the needed accuracy of the cost estimate and schedule that is required, several iterations of designs are generally provided to customers or stakeholders who feed back their requirements. The process engineer incorporates these additional instructions (scope revisions) into the overall design and additional cost estimates, and schedules are developed for funding approval. Following funding approval, the project is executed via project management.



share_phone_icon share_facebook_icon share_twitter_icon share_youtube_icon share_pinterest_icon share_linkedin_icon share_instagram_icon email_icon top_icon