POWER ENGINEERING

POWER ENGINEERING Master Degree

Feel Free to Ask Questions!

Tel : +8615850513534

E-mail : apply@acasc.cn

  • Application Deadline:2017/07/01
  • Tuition:¥16000.00
  • Application Fee:¥800.00
  • Service Fee:¥350.00
School Information

Henan Polytechnic University is a higher education institution located in the large city of Jiaozuo (population range of 1,000,000-5,000,000 inhabitants), Henan. Officially accredited/recognized by the Department of Education, Henan Province, Henan Polyte

Find more information on the university website
How To Apply

Applying through ACASC generally takes a few minutes to complete. It takes 5 steps to complete the application.

1. Click “Apply Now” button at the top of the page.

2. Fill in online application form.

3. Upload required documents.

4. Pay the application fee and the ACASC service fee

5. Click “Submit” button.

Important notice: In order to apply, you need to create an account with ACASC.

Power engineering, also called power systems engineering, is a subfield of energy engineering and electrical engineering that deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Although much of the field is concerned with the problems of three-phase AC power – the standard for large-scale power transmission and distribution across the modern world – a significant fraction of the field is concerned with the conversion between AC and DC power and the development of specialized power systems such as those used in aircraft or for electric railway networks. Power engineering draws the majority of its theoretical base from electrical engineering and while some power engineers could be considered energy engineers, energy engineers often do not have the theoretical electrical engineering background to understand power engineering.

Power Engineering deals with the generation, transmission, distribution and utilization of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors and power electronics.

The power grid is an electrical network that connects a variety of electric generators to the users of electric power. Users purchase electricity from the grid so that they do not need to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called on-grid power systems and may supply the grid with additional power, draw power from the grid or do both. The grid is designed and managed using software that performs simulations of power flows.

Power engineers may also work on systems that do not connect to the grid. These systems are called off-grid power systems and may be used in preference to on-grid systems for a variety of reasons. For example, in remote locations it may be cheaper for a mine to generate its own power rather than pay for connection to the grid and in most mobile applications connection to the grid is simply not practical.

Today, most grids adopt three-phase electric power with alternating current. This choice can be partly attributed to the ease with which this type of power can be generated, transformed and used. Often (especially in the United States), the power is split before it reaches residential customers whose low-power appliances rely upon single-phase electric power. However, many larger industries and organizations still prefer to receive the three-phase power directly because it can be used to drive highly efficient electric motors such as three-phase induction motors.

Transformers play an important role in power transmission because they allow power to be converted to and from higher voltages. This is important because higher voltages suffer less power loss during transmission. This is because higher voltages allow for lower current to deliver the same amount of power, as power is the product of the two. Thus, as the voltage steps up, the current steps down. It is the current flowing through the components that result in both the losses and the subsequent heating. These losses, appearing in the form of heat, are equal to the current squared times the electrical resistance through which the current flows, so as the voltage goes up the losses are dramatically reduced.

For these reasons, electrical substations exist throughout power grids to convert power to higher voltages before transmission and to lower voltages suitable for appliances after transmission.


share_phone_icon share_facebook_icon share_twitter_icon share_youtube_icon share_pinterest_icon share_linkedin_icon share_instagram_icon email_icon top_icon