Plant Nutrition

Plant Nutrition Master Degree

Feel Free to Ask Questions!

Tel : +8615850513534

E-mail : apply@acasc.cn

  • Application Deadline:2017/06/30
  • Tuition:¥17000.00
  • Application Fee:¥800.00
  • Service Fee:¥350.00
School Information

At present, GZU has a full-time enrollment of 44588 undergraduates, 7233 postgraduates, 9415 adult students, and 291 international students. Among the staff of 4198, there are 2530 full-time teachers, including 381 PhD owners, 1083 Master degree owners, 3

Find more information on the university website
How To Apply

Applying through ACASC generally takes a few minutes to complete. It takes 5 steps to complete the application.

1. Click “Apply Now” button at the top of the page.

2. Fill in online application form.

3. Upload required documents.

4. Pay the application fee and the ACASC service fee

5. Click “Submit” button.

Important notice: In order to apply, you need to create an account with ACASC.

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth, plant metabolism and their external supply. In 1972, Emanuel Epstein defined two criteria for an element to be essential for plant growth:

  1. in its absence the plant is unable to complete a normal life cycle.

  2. or that the element is part of some essential plant constituent or metabolite.

This is in accordance with Justus von Liebig's law of the minimum. The essential plant nutrients include carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil (exceptions include some parasitic or carnivorous plants).

Plants must obtain the following mineral nutrients from their growing medium:

  • the macronutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), magnesium (Mg)

  • the micronutrients (or trace minerals): boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molybdenum (Mo), nickel (Ni). and cobalt (Co)

The macronutrients are consumed in larger quantities for Hydrogen, Oxygen, Nitrogen, and Carbon alone contribute to over 95% of a plants' entire biomass on a dry matter weight basis. Micronutrients are present in plant tissue in quantities measured in parts per million, ranging from 0.1 to 200 ppm, or less than 0.02% dry weight.

Most soil conditions across the world can provide plants adapted to that climate and soil with sufficient nutrition for a complete life cycle, without the addition of nutrients as fertilizer. However, if the soil is cropped it is necessary to artificially modify soil fertility through the addition of fertilizer to promote vigorous growth and increase or sustain yield. This is done because, even with adequate water and light, nutrient deficiency can limit growth and crop yield.


share_phone_icon share_facebook_icon share_twitter_icon share_youtube_icon share_pinterest_icon share_linkedin_icon share_instagram_icon email_icon top_icon